The Resting Potential II

Review

- Nernst equilibrium
 - Nernst equation
 - Nernst equilibrium potential
- establishment of osmotic balance between intracellular and extracellular compartments
 - need impermeant extracellular ion to balance osmotic effect of impermeant intracellular molecules
- Donnan equilibrium
 - distribution of two permeant ions so that they share the same equilibrium potential
- portrait of hypothetical cell at equilibrium
 - $E_m = E_k = E_c$
- Deviation of real neurons from equilibrium conditions
 - under equilibrium conditions, there would be no net transmembrane ionic fluxes
 - in real neurons, both Na^+ and K^+ can and do leak across membrane
 - thus, resting neurons are not at equilibrium
 - Na^+/K^+ pump maintains concentrations, compensating for leaks
 - Cell is in steady-state, not equilibrium
 - cell uses energy to maintain ion concentrations

The battle for control of the membrane potential

- if the membrane potential (E_m) equals Nernst potential for an ion (E_{ion}), there will be no net flux of that ion across the membrane
 - illustration:
• vary membrane potential of cell \((E_m) \) while measuring flux of
 \(K^+ \) when \(E_m = E_k \), no flux
 when \(E_m \) is more negative than \(E_k \), influx of \(K^+ \) (\(K^+ \) flows into
 cell)
 influx of \(K^+ \) makes the membrane potential less negative =
 depolarization
 when \(E_m \) is more positive than \(E_k \), efflux of \(K^+ \) (\(K^+ \) flows out of
 cell)
 efflux of \(K^+ \) makes the membrane potential more negative =
 hyperpolarization
 o thus, *when the the equilibrium potential for a permeant ion differs
 from the membrane potential, that ion will tend to flow across
 membrane so as to draw the membrane potential closer to its
 equilibrium potential*

 • qualitative state of \(K^+ \) and \(Na^+ \) under steady-state (resting) conditions
 o in our model cell
 \(E_m -71 \) mV
 \(E_k -81 \) mV
 \(E_{Na} +58 \) mV
 thus, \(E_m \) is much closer to \(E_k \) than to \(E_{Na} \)
 o \(E_k \) appear to be have more influence on the resting potential
 o why?
 because resting membrane is more permeable to \(K^+ \) than to
 \(Na^+ \)
 o why?
 because of the state of the ion channels through which these
 two ions flow
 under resting conditions, \(K^+ \) crosses the membrane much more
 readily than \(Na^+ \)
 If both ions have the same charge, how could a channel let
 one ion (e.g., \(K^+ \)) pass fairly readily while excluding the other
 (e.g., \(Na^+ \))?
 because the two ions have a different *charge density* and
 radius of hydration
 \(K^+ \) is larger than \(Na^+ \) but has the same charge. Thus the
 charge *density* at the surface of the \(K^+ \) ion is lower than the
 density at the surface of the \(Na^+ \) ion, and a smaller cloud of
 water molecules surrounds \(K^+ \) than \(Na^+ \).

 • These characteristics can influence the interaction between ions and
 channels.
 • the resting membrane potential depends both on \(K^+ \) and \(Na^+ \), but it is
 more strongly influenced by \(K^+ \) than by \(Na^+ \)
resting membrane potential reflects a compromise: it lies between the equilibrium potentials for K^+ and Na^+, but much closer to E_k.

- How can we calculate the value of E_m?
 - If only K^+ could cross membrane, then the Nernst equation for K^+ would do the trick.
 - Given that both K^+ and Na^+ can cross, we must modify the Nernst equation to reflect this fact.

- **Hodgkin-Katz-Goldman equation**
 - General form (Hodgkin-Katz-Goldman Equation)
 - Under resting conditions, Cl^- has very little influence on the membrane potential.
 - Thus, we can simplify the equation to account only for K^+ and Na^+.
 - Note that if the sodium permeability is set to zero, this simplified expression reduces to the Nernst equation for potassium.
 - The Hodgkin-Katz-Goldman equation can be seen as a generalization of the Nernst equation.
 - The concentrations of more than one permeant ion are taken into account.
 - The influence of each permeant ion on the membrane potential is specified by weighting the concentration of that ion by its membrane permeability.

- **Permeability vs conductance**
 - The Hodgkin-Katz-Goldman equation is very useful for calculating membrane potentials and their dependence on concentration gradients.
 - However, it doesn't directly predict the fluxes of ions.
 - We need to know about fluxes if we are to understand the job of the membrane pumps.
 - To work with fluxes, we need to introduce a new term, conductance.
 - Also, conductances are much more easily measured than permeabilities.
 - **Permeability** describes the ease with which an ion can move through the membrane.
 - **Conductance** describes the ability of a given ion species to carry electrical current across the membrane.
 - Conductance depends on permeability, but it also depends on concentration.
 - Permeability of the membrane could be high (channels could be open), but if few ions of this type are present, then that ion species can't carry much current.
 - [It may help here to review some basic definitions of electrical terms.]

• **Parallel conductance model**
 - now that we know about conductance, we can make use of a very important relationship, **Ohm’s law**, that allows us to predict the magnitude of ion fluxes
 - Ohm’s law specifies the relationship between current (flux of charge carriers), electromotive force (the force that drives the fluxes), and conductance
 - current (I) equals the product of conductance (g) and driving force (E)
 - \(I = g \times E \)
 - this is Ohm’s law expressed in terms of transmembrane ionic currents
 - (g is the inverse of resistance (i.e., \(g = 1/R \)))

• **concept of driving force**
 - when \(E_m = E_{ion} \) there is no electromotive force operating on that ion because the ion in question is at equilibrium
 - the strength of the electromotive force depends on the difference between the membrane potential and the equilibrium potential for an ion (e.g. \(E_m - E_k \))
 - at rest, \(I_m = 0 \) (if there were a net flow of current across the membrane, the membrane potential would not be at rest, it would be changing)
 - therefore, at rest, \(I_k = -I_{Na} \) (in a cell that pumps these ions across the membrane in a 1:1 ratio)
 - from this assumption, we can demonstrate that \(E_m \) depends on the ratio of sodium to potassium conductance, \(g_{Na}/g_{k} \) (**Parallel-Conductance Equation**)
 - if \(g_{Na} \) is much greater than \(g_{k} \), then the membrane potential will approach the sodium equilibrium potential
 - if \(g_{Na} \) is much less than \(g_{k} \), then the membrane potential will approach the potassium equilibrium potential
 - at rest, \(g_{Na} \) is considerably less than \(g_{k} \), and thus, the membrane potential is close to the potassium equilibrium potential
 - however, because \(g_{Na} \neq 0 \) under resting conditions, the membrane potential is "pulled" slightly away from \(E_k \), in the direction of the sodium equilibrium potential

• this model is very useful, because it allows us to predict both the changes in membrane potential and the ion fluxes that result from changes in conductances
 - conductances change as a result of the opening and closing of ion channels
 - as we will see, this is basis for post-synaptic potentials and action potentials
Interim summary: K⁺ and Na⁺ in the resting state

- a relatively small force drives K⁺ through a relatively substantial conductance
- a relatively large force drives Na⁺ though a much smaller conductance
 - why is the force on K⁺ small?
 - because the membrane potential is almost negative enough to balance the concentration gradient for K⁺
 - why is the resting K⁺ conductance appreciable?
 - because some K⁺ channels are open at rest
 - why is the force on Na⁺ large?
 - because both the concentration gradient and the electrostatic gradients for Na⁺ point in the same direction
 - why is the resting Na⁺ conductance small?
 - because most Na⁺ channels are closed at rest
- the driving force for Na⁺ is larger than the driving force on K⁺, but the conductance to Na⁺ is smaller than the conductance to K⁺
 - given that current is equal to the product of driving force and conductance, the transmembrane currents carried by K⁺ and Na⁺ are pretty similar under resting conditions
 - in a simplified model cell, we can treat the two currents as equal and opposite
 - the first three equations under the heading "Parallel-Conductance Equation" are based on this assumption
 - to make the model cell more realistic, we take into account the fact that the Na⁺ current is about 1.5 times larger than the K⁺ current
 - the final equation under the heading "Parallel-Conductance Equation" incorporates a term for the Na⁺/K⁺ transport ratio
 - the constant leak of Na⁺ and K⁺ across the membrane would eventually change the membrane potential if the cell did not use energy to oppose them
 - the cell does expend energy for this purpose, pumping ions across the membrane at rates that are equal and opposite to the passive fluxes
 - the pump simply offsets the currents flowing passively across the membrane, thereby holding the ion concentrations constant
 - thus, in the final equation under the heading "Parallel-Conductance Equation," setting the term for the Na⁺/K⁺ transport ratio to 1.5, will also set the ratio of I₉Na/I₉K to 1.5
- Because the Na⁺/K⁺ pump offsets the leakage of Na⁺ and K⁺ across the membrane, the cell remains in a steady state
unless subject to outside influences, this model cell will have an unchanging resting potential, and unchanging concentrations of sodium and potassium
 - it must expend energy to achieve this steady state

Role of the Na\(^+\)/K\(^+\) pump

- as mentioned above, the pump is responsible for the maintenance of concentration gradients
- in simplified model cell, the pump must compensate for equal and opposite fluxes of K\(^-\) and Na\(^+\)
- in the more realistic model, there is roughly a 3:2 exchange of Na\(^+\) and K\(^-\)
 - thus, pump is electrogenic, doing both chemical and electrical work
 - in a cell with an electrogenic pump, speeding up or slowing the pump will change the membrane potential
- as an exercise, try incorporating the 3:2 exchange of Na\(^+\) and K\(^-\) while solving the
 - Hodgkin-Katz-Goldman equation
 - parallel-conductance equation
- pump is an ATPase, and enzyme that breaks down ATP to AMP, thus harnessing energy
 - this energy is used to pump ions against concentration gradient and, in the cases where the pump is electrogenic, to do electrostatic work
- the Na\(^+\)/K\(^+\) pump is one of many membrane pumps
 - some cells also have Cl\(^-\) pumps
 - all have Ca\(^{++}\) pumps

Unfinished business: what about Cl\(^-\)?

- in neurons without a Cl\(^-\) pump, the concentrations of Cl\(^-\) adjusts so that the equilibrium potential for this ion equals the resting membrane potential
- in neurons with a Cl\(^-\) pump, the equilibrium potential for Cl\(^-\) differs from the resting potential by a few millivolts
 - resting Cl\(^-\) conductance is so low, that this ion has little influence on the resting potential
Summary of the resting state

- an uneasy balance of forces and fluxes
- Na\(^+\) and K\(^+\) leak across the membrane
- the Na\(^+\)/K\(^+\) pump compensates for these fluxes
- thus, ion concentrations are held constant
- given that the resting value of \(g_{Na}\) is considerably less than the resting value of \(g_k\), the membrane potential is close to the potassium equilibrium potential, \((E_m\) is about -60 to -90 millivolts (negative inside))
- changing \(g_{Na}/g_k\) (or certain other conductances) will upset this uneasy balance of forces and fluxes
 - such changes are the basis of the action potentials and post-synaptic potentials we will study in the coming lectures