MAST-CELL INFILTRATION OF AIRWAY SMOOTH MUSCLE IN ASTHMA

ABSTRACT

Background Asthma and eosinophilic bronchitis are characterized by similar inflammatory infiltrates in the submucosa of the lower airway. However, eosinophilic bronchitis differs from asthma in that there is no variable airflow obstruction or airway hyperresponsiveness in the former condition. We tested the hypothesis that there were differences between the two conditions in the microlocalization of mast cells within the airway smooth muscle.

Methods Immunohistochemical analysis of bronchial-biopsy specimens was completed in 17 subjects with asthma, 13 subjects with eosinophilic bronchitis, 8 normal controls from Southampton, United Kingdom, and 15 subjects with asthma and 8 normal controls from Leicester, United Kingdom.

Results Both groups with disease had a similar degree of submucosal eosinophilia and thickening of the basement membrane and lamina reticularis. By contrast, the number of tryptase-positive mast cells in the bundles of airway smooth muscle from subjects with asthma (median, 5.1 mast cells per square millimeter; range, 0 to 33.3) was substantially higher than that in subjects with eosinophilic bronchitis (median, 0 mast cells per square millimeter; range, 0 to 4.8) and that in normal controls (median, 0 mast cells per square millimeter; range, 0 to 6.4; P<0.001 for the comparison among the three groups).

Conclusions The infiltration of airway smooth muscle by mast cells is associated with the disordered airway function found in asthma. (N Engl J Med 2002; 346:1699-705.)

Copyright © 2002 Massachusetts Medical Society.

ASTHMA is characterized physiologically by variable airflow obstruction and airway hyperresponsiveness. Pathologically, asthma is characterized by the accumulation of eosinophils and CD4+ lymphocytes in the submucosa, mucous-gland hyperplasia, thickening of the subepithelial collagen layer, submucosal matrix deposition, mast-cell degranulation, and hypertrophy and hyperplasia of the airway smooth muscle.1

The extent to which airway inflammation and airway hyperresponsiveness in patients with asthma are related to one another remains controversial.2 However, there is a clear dissociation between airway inflammation and airway hyperresponsiveness in patients with eosinophilic bronchitis3,4 — a condition characterized by cough that is responsive to corticosteroids and eosinophilia detectable in sputum without variable airflow obstruction or airway hyperresponsiveness.5-7 Since patients with eosinophilic bronchitis have higher concentrations of histamine and prostaglandin D2 in their sputum than do patients with asthma,8 we hypothesized that there may be differences between the two conditions in the localization of mast cells within the airway wall. To test our hypothesis, we performed a comparative immunohistochemical analysis of bronchial-mucosa–biopsy specimens obtained from symptomatic patients with asthma, symptomatic patients with eosinophilic bronchitis, and normal controls.

METHODS

Study Subjects

Subjects were recruited from two centers. A total of 15 subjects with asthma, 16 subjects with eosinophilic bronchitis, and 14 normal controls were recruited from Leicester, United Kingdom, and 15 subjects with asthma and 8 normal controls were recruited from Southampton, United Kingdom.

There was assessable airway smooth muscle in the biopsy specimens from 8 subjects with asthma, 13 subjects with eosinophilic bronchitis, and 8 normal controls from Leicester and from 9 subjects with asthma and 3 normal controls from Southampton (Table 1). Subjects with asthma had characteristic symptoms and had variable airflow obstruction as indicated by one or more of the following: improvement by more than 15 percent in the forced expiratory volume in one second (FEV1) 10 minutes after the inhalation of 200 µg of albuterol; airway hyperresponsiveness, defined by a provocative concentration of methacholine required to lower the FEV1 by 20 percent (PC20) of less than 8 mg per milliliter; or daily variability of more than 20 percent in the peak expiratory flow (PEF), as measured twice daily for 14 days. Subjects with eosinophilic bronchitis had a persistent isolated cough, no symptoms suggesting variable airflow obstruction during an observation period of at least two months, variability of less than 20 percent in the PEF, a normal chest radiograph, and on at least two occasions separated by more than two months, normal spirometric values, a PC20 for methacholine of more than 16 mg per milliliter, and eosinophilia detectable in sputum (median percentage of eosinophils in sputum one week before bronchoscopy, 11.3 percent [range, 3.5 to 68.0]). Normal subjects were asymptomatic, had no evidence of variable airflow obstruction, and had a PC20 for methacholine of more than 16 mg per milliliter. All subjects were currently nonsmokers with a smoking history of less than 10 pack-years. None of the subjects had taken inhaled or oral corticosteroids for at least six weeks before the study; all subjects with asthma used only short-acting β2-adrenergic agonists as required. The study was approved by the Leicestershire

From the Division of Respiratory Medicine, Institute for Lung Health, Leicester—Warwick Medical School and University Hospitals of Leicester, Leicester (C.E.B., P.B., F.A.S., A.J.W., I.D.P.); and the University of Southampton and Southampton General Hospital, Southampton (S.T.H.) — both in the United Kingdom. Address reprint requests to Dr. Pavord at the Department of Respiratory Medicine, University Hospitals of Leicester, Groby Rd., Leicester LE3 9QP, United Kingdom.
and Southampton ethics committees, and all subjects gave written informed consent.

Protocol and Clinical Measurements

The protocol required two visits one week apart. Spirometry, skin testing with allergens, and methacholine testing were performed, followed on recovery by the induction of sputum in the subjects at the Leicester site. Spirometry was performed with a dry bellows spirometer (Vitalograph), and the best of at least three successive readings within 100 ml of one another was recorded as the FEV₁ (percent of predicted value) by 20 percent.

Assessment and Quantification

Areas of airway smooth muscle and subepithelial mucosa (lamina propria) were identified by morphologic examination, and the area was calculated with the use of a computer analysis system (Scion). We validated our detection of airway smooth muscle by comparing the area of smooth muscle measured in 11 pairs of contiguous sections after one of each pair of sections was assessed by morphologic examination and the other by staining for smooth-muscle actin (Dako). Nucleated, immunostained cells present in coded sections were enumerated in the lamina propria and airway smooth muscle, and the number of cells was expressed as the number per square millimeter of submucosa and smooth muscle. Cells were counted within the bundles of smooth muscle but not in the adjacent areas and were confirmed to be in the substance of the smooth muscle on the basis of serial sections obtained in order to avoid counting cells within the mucosal tissue that were juxtaposed owing to biopsy artifact. Tryptase-positive and chymase-positive mast cells within the airway smooth muscle were localized in a subgroup of four subjects with asthma who had sufficient airway smooth muscle. The thickness of the basement membrane and the lamina reticularis was calculated as the mean of 50 observations at 20-µm intervals.

Each of two observers who were unaware of the subjects’ disease status examined 20 sections for the presence of airway smooth muscle. All specimens from the three groups were intermingled during processing and counting. A minimal area of 0.1 mm² from a biopsy section of airway smooth muscle was considered sufficient for the assessment of cellular infiltration, and two to four sections at least 10 µm apart were assessed for each subject; these sections came from a single biopsy in 23 subjects and from two biopsies in 18 subjects. There were no differences between groups in the number of sections in which the area of smooth muscle was quantified. The area for each subject was expressed as the mean of the areas in all the assessable sections. In a single subject with asthma and two subjects with eosinophilic bronchitis, the basement membrane available for evaluation measured less than 1 mm in length, so data on the thickness of the basement membrane are not reported.

Statistical Analysis

Characteristics of the subjects are reported with the use of descriptive statistics. Cell counts are expressed as medians and ranges. Data on the thickness of the basement membrane and the lamina reticularis were normally distributed in each group, as confirmed by the Kolmogorov–Smirnov test for normality, and are reported as means ±SE. Comparisons among the three groups were made with the Kruskal–Wallis test; the Mann–Whitney U test was used for comparisons between groups involving nonparametric data;
RESULTS

The values for submucosal eosinophil counts, mast-cell counts, and thickness of the basement membrane and lamina reticularis are presented in Figure 1. The median submucosal eosinophil count was 2.1 per square millimeter (range, 0 to 12.4) in the normal controls, 9.5 per square millimeter (range, 2.5 to 75.0) in subjects with asthma, and 10.0 per square millimeter (range, 3.4 to 114.0) in subjects with eosinophilic bronchitis. There were significant differences in these counts between the controls and both the subjects with asthma (difference, 7.4 [95 percent confidence interval, 3.2 to 18.2]; P=0.002) and the subjects with eosinophilic bronchitis (difference, 7.9 [95 percent confidence interval, 4.0 to 18.7]; P=0.002), but there was no significant difference between the two groups with disease. There were no significant differences among the groups in the submucosal T-lymphocyte count (median among subjects with asthma, 48 per square millimeter [range, 22 to 122]; median among subjects with eosinophilic bronchitis, 42 per square millimeter [range, 9 to 145]; and median among normal controls, 53 per square millimeter [range, 8 to 255]; P=0.53) or the mast-cell count (median among subjects with asthma, 24 per square millimeter [range, 6 to 82]; median among subjects with eosinophilic bronchitis, 28 per square millimeter [range, 13 to 78]; and median among normal controls, 17 per square millimeter [range, 11 to 67]; P=0.85) (Fig. 1).

The mean (±SE) thickness of the basement membrane and the lamina reticularis was significantly greater in the subjects with asthma (10.0±0.5 μm) than in the normal controls (6.7±0.4 μm) (difference between subjects with asthma and normal controls, 3.3 [95 percent confidence interval, 1.9 to 4.7]; P<0.001; difference between subjects with eosinophilic bronchitis and normal controls, 4.1 [95 percent confidence interval, 0.9 to 7.2]; P=0.02), but there was no significant difference between the two groups with disease.

Smooth muscle could be readily identified by its morphologic appearance (Fig. 2A). The intraclass correlation coefficient between the area of smooth muscle measured by morphologic examination and that measured by positive staining for actin was 0.96. The area of smooth muscle assessed per biopsy section was similar in the three groups (median, 0.3 mm² in the subjects with asthma [range, 0.16 to 0.97]; 0.35 mm² in the subjects with eosinophilic bronchitis [range, 0.1 to 1.9]; and 0.3 mm² in the normal controls [range, 0.12 to 0.91]; P=0.61). In the subjects with asthma, there was a median of 2 mast cells per section of airway smooth muscle (range, 0 to 8); in the subjects with eosinophilic bronchitis, there was a median of 0 (range, 0 to 2); and in the normal controls, there was also a median of 0 (range, 0 to 5). The number of mast cells per square millimeter of smooth muscle was significantly higher in the subjects with asthma (median, 5.1 [range, 0 to 33.3]) than in subjects with eosinophilic bronchitis (median, 0 [range, 0 to 4.8]; difference, 5.1 [95 percent confidence interval, 2.5 to 6.1]; P<0.001) or in normal controls (median, 0 [range, 0 to 6.4]; difference, 5.1 [95 percent confidence interval, 0.2 to 5.9]; P=0.01) (Fig. 2B and 3).

There was a significant inverse correlation between the number of mast cells infiltrating the bronchial smooth muscle and the PC_{20} for methacholine in the subjects with asthma (r=−0.5, P=0.03). In a subgroup of four subjects with asthma, 83 percent of the mast cells in airway smooth muscle were positive for tryptase and chymase. Eosinophils were observed in the airway smooth muscle in five subjects with asthma and in two subjects with eosinophilic bronchitis. T lymphocytes were only observed in two subjects with asthma and two normal controls. There were no significant differences between the atopic and nonatopic persons within a given group in terms of any of the measures we used.

DISCUSSION

Our results demonstrate that there is a striking difference between the number of mast cells in the airway smooth muscle in patients with asthma and the number in both normal subjects and patients with eosinophilic bronchitis. This observation has potential implications for our understanding of the pathogenesis of asthma and the pathophysiological role that mast cells have in this disease.

It is possible that mast-cell infiltration of the airway smooth muscle is a general feature of obstructive lung disease and is not specific to asthma. One limitation of our study is the absence of a control group of subjects with other obstructive lung diseases such as chronic obstructive pulmonary disease, although given the overlap between the clinical and pathophysiological features of asthma and chronic obstructive pulmonary disease, such studies would have to be interpreted with careful attention to clinical phenotype.

We used subjects with eosinophilic bronchitis as a control group with disease because eosinophilic bronchitis shares many of the features of asthma but is characterized by normal airway function. We reasoned that any difference in pathology between the
The New England Journal of Medicine

Figure 1. Numbers of Tryptase-Positive Submucosal Mast Cells and EG2-Antibody–Positive Submucosal Eosinophils per Square Millimeter and Thickness of the Basement Membrane and Lamina Reticularis in Subjects with Asthma, Subjects with Eosinophilic Bronchitis, and Normal Controls.

For the eosinophil count, \(P = 0.001 \) by the Kruskal–Wallis test for the comparison among the three groups. For the thickness of the basement membrane and the lamina reticularis, \(P = 0.002 \) by analysis of variance for the comparison among the three groups. Solid triangles represent atopic subjects, and open triangles nonatopic subjects. The horizontal lines represent the median values in the top two panels and the mean value in the bottom panel.

Copyright © 2002 Massachusetts Medical Society. All rights reserved.
two conditions would most likely be related to the features that are relevant to these functional abnormalities. We observed a striking difference between the number of mast cells that were present in the airway smooth muscle of subjects with asthma and the number in either normal subjects or subjects with eosinophilic bronchitis.

The hypothesis that mast cells are localized in the airway smooth muscle and that interactions between mast cells and smooth-muscle cells are important in asthma is plausible. Airway smooth muscle can provide the correct microenvironment for the differentiation, activation, and survival of mast cells.\(^\text{14}\) Several mast-cell products have the potential to affect adversely the growth and function of smooth muscle, and their microlocalization in the smooth muscle would probably facilitate this interaction. For example, the mast-cell–derived autacoid mediators histamine, prostaglandin \(D_2\), and the cysteinyl leukotrienes are potent spasmogens of airway smooth muscle, and the mast-cell–specific serine protease tryptase could potentially induce bronchoconstriction, airway remodelling, and airway hyperresponsiveness through a variety of mechanisms.\(^\text{14-17}\) The hypothesis that the infiltration of mast cells into airway smooth muscle is functionally important is supported by our observation that the number of mast cells in the smooth muscle of patients with asthma was inversely correlated with the degree of airway hyperresponsiveness.

We have previously found greater concentrations of the mast-cell products histamine and prostaglandin \(D_2\) in induced sputum from subjects with eosinophilic bronchitis than in sputum from subjects with asthma.\(^\text{7}\) Furthermore, the number of mast cells in bronchial brushings was significantly higher in subjects with eosinophilic bronchitis than in those with asthma.\(^\text{6}\) These observations suggest that mast cells might preferentially localize in the superficial airway structures in patients with eosinophilic bronchitis.

The assessment of airway epithelium by means of bronchial biopsies is confounded by variation in epithelial integrity, which may reflect a real effect of disease or an artifact;\(^\text{18}\) therefore, the biopsy material collected in our study is inadequate for testing this hypothesis. Further studies using a wider variety of techniques to sample the lower airway are required in order to explore in greater detail the localization of mast cells within the airway in patients with eosinophilic bronchitis and patients with asthma.

Most inflammatory mediators are rapidly inactivated once they leave the cell, so they act across distances of only a few micrometers. Microlocalization is therefore a fundamental organizing principle of inflammatory responses, although it has not been given sufficient attention in previous studies of the immunopathology of asthma — in part because thick frozen sections do not provide adequate detail for morphologic examination and only small amounts of smooth-muscle tissue can be obtained by fiberoptic bronchoscopy. With the use of glycol-methacrylate embedding and ultrathin sections, we obtained excellent samples for morphologic examination. The identification of smooth muscle was validated by means of actin staining and was found to be reliable. Although relatively small amounts of smooth muscle were present, we believe our data are robust. There were no differences among the three groups in the
amount of smooth muscle examined, so this does not represent a source of bias. The slides were studied by observers who were unaware of the subjects’ disease status, and any bias that might result from recognition of pathological changes caused by asthma is negated by the fact that eosinophilic bronchitis and asthma are morphologically similar.

Our confidence in the existence of the increase we report in the number of mast cells in airway smooth muscle in patients with asthma is bolstered by the findings from lung-resection and postmortem studies.Bronchial rings that exhibited contractile responses to allergens in ex vivo studies contained more mast cells within the smooth muscle than those that were unresponsive, and the number of mast cells within the airway smooth muscle in these rings was similar to the number we found in subjects with asthma. In patients who have died from asthma, the number of mast cells throughout the bundles of airway smooth muscle has been reported to be higher than that in control tissue from lung resections. In both these studies, mast cells were the predominant type of inflammatory cell localized to the airway smooth muscle, and there was a striking paucity of eosinophils and T lymphocytes, findings that support our suggestion that there is a selective recruitment of mast cells.

In summary, our findings suggest that a key factor in the development of the variable airflow obstruction and airway hyperresponsiveness observed in asthma is the microlocalization of mast cells within the bundle of airway smooth muscle; we have not ruled out the possibility that this is a feature of obstructive lung disease in general. Our data support the speculation that the interactions between smooth muscle and infiltrating mast cells is a key element in the development of disordered airway function in asthma.

Supported by a grant (99/004) from the National Asthma Campaign (United Kingdom). Dr. Bradding is a Wellcome Trust Advanced Fellow.

We are indebted to the subjects who participated in the study; to the Woodhouse Eaves Ladies Group for raising funds for an ultramicrotome; to Dr. S. Birring, Mrs. D. Parker, and Mr. S. Barlow for technical assistance in the laboratory; and to Mrs. S. McKenna and Mrs. B. Hargadon for assistance in the clinical characterization of some of the patients.

REFERENCES

6. Gibson PG, Zlatic K, Scott J, Sewell W, Woolley K, Salton N. Chronic cough resembles asthma with IL-5 and granulocyte-macrophage colony-
mast cells in airway smooth muscle in asthma

Copyright © 2002 Massachusetts Medical Society.